Equipment being relocated must move through public corridors and outside areas; equipment being repaired or disposed is being transferred to service or disposal personnel unfamiliar with your lab and its hazards. In all cases, you are responsible for protecting others from unknown contamination. Learn more in Equipment Transfer Safety Note.
Category: Reference
Safety reference material and links
Protect your eyes from high-intensity light
Protect your vision when working with UV germicidal lamps; lasers; welding and arc lamps; or other high–energy light sources. Special goggles limit the amount of light that can reach your eyes and skin. The type and amount of protection depends on the frequency, nature, and intensity of light. Learn more in Light eye protection.
Protect your face with a face shield
When a hazard involves a lot of energy or aggressive chemicals, your face may be at risk as well as your eyes. Also, Z87.1 or Z87.1+ rated eye protection may not be adequate to protect your eyes, so additional protection might be prudent. If you could injure your face in an accident, use a face shield to protect your face – learn more in High energy facial protection.
Protect your eyes from physical hazards
Protect your eyes from chemical hazards
Chemical hazards require eye protection specifically designed for chemical hazards. Many chemicals can cause serious damage or irritation when they get into your eyes. These include, but are not limited to, acids, caustics and solvents. When working with chemical eye hazards, wear chemical splash goggles to protect your eyes – learn more in Chemical Hazard Eye Protection.
Is your plastic gas tubing an over-inflated balloon?
Many labs use compressed gases, and often we use pressure regulators to step down the 2000-3000 psi in the cylinder to the use pressure. If the regulator can produce more than about 30 psi outlet, your plastic tubing might be in danger of rupture. Read more about how to fix this without buying a new $500 regulator in How to prevent plastic tubing rupture.
Safety and extra cost don’t go together
Many people think that safety improvements for an experiment always cost extra money. This is not true–many times, appropriate improvements avoid cost while making the research inherently safer. Read about one such case that saved the Electrical and Computer Engineering department over $10,000 (and lots of class time) in Cost reduction ECE laser teaching lab.
What eye protection do I use?
There are many different types of protective eyewear available, and each one is designed to protect against a different hazard. Having the wrong type of safety eyewear can be worse than not wearing eye protection at all. Learn about the basic types in Choosing eye protection.
This Hopkins Safety Note is the start of a series on eye protection, so look for future notes covering the different types in detail.
Don’t buy cheap lasers!
Recently, a researcher in MD Hall purchased two inexpensive “pointing lasers” over the Internet to use in an experiment. Fortunately, before starting work with the lasers, the researcher consulted with the Laser Safety Advocate—who determined that the lasers were actually dangerous 1-watt infrared Class 4 lasers, and a serious threat to anyone in the room if they were used without controls. With a little 3-D printer magic, the LSA re-engineered the experimental apparatus so that the system was a safer Class 1, not even needing protective laser goggles. Read about the case in Class 4 pointing lasers.
Communicate precisely and accurately with labmates and collaborators
In the lab, we often collaborate with others in the lab or with outside researchers. It is essential that lab protocols be communicated consistently and in language everyone understands. Learn about a close call that occurred when a JHU researcher misunderstood an outside collaborator’s protocol in CCall miscommunication MD.