Month: September 2017

JHU lab safety “Who’s who”

Dan Kuespert, PhD, CSP

Homewood Laboratory Safety Advocate
Krieger School of Arts & Sciences/Whiting School of Engineering
410-516-5525 (x6-5525)
103G Shaffer Hall
[email protected]

Dan is a PhD chemical engineer who is a great point of contact for all things lab safety. He works jointly for the Deans of the School of Arts & Sciences and the School of Engineering. He acts as an internal safety consultant, providing training courses (both academic and informal), consulting (from answering simple questions to re-engineering experimental designs to help make them safer), and generally working to enhance the safety culture at Homewood.


Niel Leon

Homewood Laser Safety Advocate
410-516-6752 (x6-6752)
G-43 Wyman Park Building
[email protected]

Niel is the campus’ laser safety expert. He is the principal resource for laser-using faculty, staff, and students in developing safe practices, procedures, experiments, and facilities. A skilled mechanical engineer, Niel can frequently re-engineer a laser installation so that laser safety goggles are not necessary during normal operation.


Perry Cooper, MS, HEM, CCHO

HSE Manager
JHU Department of Health, Safety, and Environment
410-516-8798 (x6-8798)
G-2 Wyman Park Building
[email protected]

HSE is the University’s centralized occupational health and safety department. Although it is based primarily at the Johns Hopkins Medical Institutions in east Baltimore, Perry manages the office that services Homewood specifically. He is a certified hazardous materials manager and a certified chemical hygiene officer. Perry is your contact for policy issues, industrial hygiene advice, waste disposal, etc. HSE also provides the campus hazardous materials (HAZMAT) team, which handles chemical incidents too large for individual lab personnel.


Stephen Dahl, PhD, RBP

JH Biosafety Officer
410-955-5918 (x5-5918)
2024 E. Monument Street
[email protected]

Steve is Director of Biosafety for Johns Hopkins and a PhD microbiologist. He is your first point of contact for matters biological, ranging from consultations on sterilization methods to registration and risk assessment for proposed biological research. he also supervises the Health, Safety, and Environment annual laboratory inspection program.


Mina Razavi

Homewood Radiation Safety Officer
410-516-7278 (x6-7278)
Macaulay Hall basement
[email protected]

Mina is Radiation Safety Officer for the Homewood campus, and your contact for all things radioactive. She manages radiation licensing, materials ordering, personnel monitoring, regulatory compliance, and waste disposal. Always direct questions about JHU radiation safety policies and procedures to Mina.


Carolyn Schopman, RN

Occupational Health Nurse Manager
410-516-0450 (x6-0450)
Eastern C160 (New Location Aug 2017)
[email protected]

Carol oversees Homewood’s Occupational Health Services, which provides preventive medicine (e.g. vaccinations), medical surveillance (including respirator clearance), first aid and treatment for occupational injuries and illnesses, worker’s compensation services, and health training (e.g. CPR).

 

Transporting chemicals

There is often a need to move chemicals from room to room or between buildings. Hand-carrying hazardous chemicals can introduce a variety of ways that you, others, or the environment can be exposed. It is essential to transport chemicals properly in order to transport them safely. Tips for safe transport include:

  1. Carry bottles or jars in trays or bottle carriers instead of by hand—they are less likely to become broken, and the tray/carrier provides secondary containment.
  2. If using trays, push the tray on a laboratory cart instead of carrying it. Suppose you trip while executing the carry? A carried tray would fall and the contents would leak out.
  3. According to the National Academy of Sciences, carts used to transport chemicals should have at least a 2-inch lip to provide adequate containment.
  4. Do not crowd the bottle carrier or tray—trying to put two bottles in a single-bottle carrier or overloading the tray. This makes it more likely something will fall out.
  5. Line the bottom of the tray or carrier with vermiculite or a spill-absorbent pad to help absorb minor leaks.
  6. Bear in mind that some chemicals rapidly degrade or even explode in the presence of strong temperature changes or bright sunlight. Peroxide-forming chemicals are notorious for this if they have built up sufficient hazardous peroxides.
  7. Do not transport incompatible chemicals (e.g., acids and bases) together in the same tray or carrier.
  8. If moving chemicals further than the next lab, bring spill-management supplies along—the same spill kit you would use in your lab. Your quick action to clean up a spill can prevent a complex and expensive response by the JHU hazardous materials team or by the Baltimore Fire Department.
  9. When moving chemicals, it is a good time to verify that they have proper labeling: full chemical name, in English, is required (e.g., “isopropyl alcohol” instead of “IPA”). If there is not sufficient space to do this, use abbreviations and carry a key to the abbreviations with you to give to the new lab. Common chemical names are sufficient; full IUPAC nomenclature is not necessary.
  10. If the chemicals you are moving are heat-sensitive, package them in a box with a cold pack to maintain quality. If the chemicals may become shock-sensitive, consult with the Department of Health, Safety, and Environment before the move.